大香蕉视频,国产国模精品大胆私拍,把女友头按着深喉好爽,欧美潮喷vitacocoxxx

賽斯拜克中國核心技術(shù)品牌 博士專業(yè)研發(fā)團(tuán)隊(duì)   18年專注高光譜

咨詢熱線:400-888-5135

如何利用高光譜相機(jī)準(zhǔn)確評價玉米的霉變程度

來源:賽斯拜克 發(fā)表時間:2023-10-26 瀏覽量:641 作者:

?在農(nóng)業(yè)生產(chǎn)中,玉米的品質(zhì)和安全性一直備受關(guān)注。玉米霉變問題不僅影響其口感和營養(yǎng)價值,還可能對人體健康造成威脅。為了解決這一問題,準(zhǔn)確評價玉米霉變程度顯得尤為重要。本文將介紹高光譜相機(jī)在評價玉米霉變程度方面的優(yōu)勢和原理,以及如何利用高光譜相機(jī)準(zhǔn)確評價玉米霉變程度。


圖片6.png

問題陳述:


玉米霉變程度的評價通常依賴于人工檢測,這種方法不僅效率低下,還可能存在誤差。如何準(zhǔn)確、快速地評價玉米霉變程度,一直是農(nóng)業(yè)生產(chǎn)中的難題。

解決方案:

高光譜相機(jī)是一種新型的光譜成像技術(shù),能夠獲取物體的高光譜信息,從而實(shí)現(xiàn)對物體內(nèi)部結(jié)構(gòu)和性質(zhì)的準(zhǔn)確檢測。將其應(yīng)用于玉米霉變程度的評價,具有以下優(yōu)勢:

1. 非損傷性評估:高光譜相機(jī)通過獲取玉米的高光譜信息,無需破壞玉米樣品,即可對其內(nèi)部品質(zhì)進(jìn)行檢測。
2. 高準(zhǔn)確性:高光譜相機(jī)通過對玉米的多個光譜特征進(jìn)行分析,可以更準(zhǔn)確地反映其霉變程度。
3. 快速檢測:高光譜相機(jī)可以快速獲取玉米的高光譜信息,大大提高了檢測速度。

功能特點(diǎn):

高光譜相機(jī)在評價玉米霉變程度方面具有以下特殊功能:

1. 高準(zhǔn)確性:通過對玉米的多光譜特征進(jìn)行分析,可以更準(zhǔn)確地反映其霉變程度。
2. 非損傷性評估:無需破壞玉米樣品,即可對其內(nèi)部品質(zhì)進(jìn)行檢測。
3. 快速檢測:可以快速獲取玉米的高光譜信息,大大提高了檢測速度。
4. 可視化分析:高光譜相機(jī)可以將獲取的玉米高光譜信息以圖像形式呈現(xiàn),便于分析其內(nèi)部品質(zhì)。


基于高光譜技術(shù)的霉變玉米定量檢測方法研究


  本研究應(yīng)用了400-1000nm的高光譜相機(jī),可采用廣東賽斯拜克科技有限公司產(chǎn)品SP130M進(jìn)行相關(guān)研究。光譜范圍在400-1000nm,波長分辨率優(yōu)于2.5nm,可達(dá)1200個光譜通道。采集速度全譜段可達(dá)128FPS,波段選擇后最高3300Hz(支持多區(qū)域波段選擇)。

高光譜相機(jī)SineSpec?系列

  新鮮玉米在存貯過程中,由于其胚部大、水分含量高、帶菌量多,高溫高濕環(huán)境下極易霉變,不僅給經(jīng)濟(jì)造成重大損失,而且霉變玉米在代謝過程中會產(chǎn)生多種對人體具有極強(qiáng)致病性、致癌性的毒素,危害人畜健康。而目前基于理化實(shí)驗(yàn)分析的霉變玉米檢測方法因存在樣品處理繁瑣、費(fèi)時、對樣品有破壞性等缺點(diǎn),難以實(shí)現(xiàn)簡單、快速、無損檢測,無法滿足實(shí)際生產(chǎn)的需要。因此,基于高光譜技術(shù)的快速、準(zhǔn)確、無損的霉變玉米檢測研究具有重要意義。黃曲霉毒素B1(aflatoxin B1,AFB1)和玉米赤霉烯酮(zearalenone,ZEN)是霉變玉米內(nèi)生成的2種比較穩(wěn)定的代謝產(chǎn)物,容易在霉變玉米中積累,導(dǎo)致含量升高,AFB1和ZEN的多少與玉米霉變情況密切相關(guān),也是表征玉米霉變程度的重要指標(biāo)。因此,可以通過監(jiān)測玉米中AFB1和ZEN 含量變化來表征玉米的霉變情況,實(shí)現(xiàn)對玉米霉變程度的準(zhǔn)確評價。

圖片8.png

圖片9.png

圖片10.png

圖片11.png圖片12.png

  首先,設(shè)置適宜的溫度和濕度條件,在實(shí)驗(yàn)室的恒溫恒濕培養(yǎng)箱中培育不同霉變等級的玉米樣品。按照國標(biāo)法測定不同霉變等級玉米樣品內(nèi)AFB1和ZEN 含量。同時采集所有樣本的高光譜圖像并進(jìn)行黑白校正。因?yàn)楸尘霸肼?、雜散光等無用信息的存在,原始光譜數(shù)據(jù)會受到一定的影響,進(jìn)行數(shù)據(jù)分析前應(yīng)對原始光譜進(jìn)行預(yù)處理。本文通過對比5種預(yù)處理方法,最終確定采用標(biāo)準(zhǔn)正態(tài)變量校正(SNV)法為預(yù)處理方法。為提高預(yù)測模型穩(wěn)健性,本研究對樣本集的劃分進(jìn)行研究,對比了隨機(jī)法(RS)、KS(Kennard-Stone)算法、雙向法(Duplex)和光譜-理化值共生距離(SPXY)算法4種樣本集劃分方法,PLSR模型構(gòu)建結(jié)果表明,利用SPXY法進(jìn)行樣本集劃分時,所構(gòu)建的模型校正集和測試集準(zhǔn)確率均高于其他三種,


  因而本文采用SPXY算法對樣本集進(jìn)行劃分。為盡量有效地降低樣本間的共線性,降低模型復(fù)雜度,本文采用SPXY算法對校正集樣本進(jìn)行進(jìn)一步優(yōu)選,對于AFB1,最終從初始校正集中優(yōu)選出130個樣本組成模型校正集;對于ZEN,最終從初始校正集中優(yōu)選出140個樣本組成模型校正集。在采用均勻光譜間隔(USS)法對原始光譜變量進(jìn)行初降維的基礎(chǔ)上,對比連續(xù)投影算法(SPA)和競爭性自適應(yīng)重加權(quán)算法(CARS)2種變量提取法。結(jié)果表明∶經(jīng)SPA 法分別篩選出17個特征波段且基于較少校正集樣本和特征波長光譜信息建立的PLSR 模型能夠獲得較優(yōu)的預(yù)測結(jié)果。因此,基于光譜-理化值共生距離(SPXY)算法和連續(xù)投影(SPA)算法進(jìn)行特征提取后建立的高光譜檢測模型,可以實(shí)現(xiàn)對霉


  變玉米中AFB1和ZEN含量的準(zhǔn)確預(yù)測。最后,在原始光譜數(shù)據(jù)經(jīng)過SNV預(yù)處理后,采用SPXY算法對校正集樣本進(jìn)行劃分與優(yōu)選,運(yùn)用USS法結(jié)合SPA算法對光譜數(shù)據(jù)進(jìn)行篩選的基礎(chǔ)上分別建立基于優(yōu)選后的校正集樣本及特征波長PLSR、LSSVM和MLR預(yù)測模型,并對比模型結(jié)果。本研究最終確定基于LS-SVM的模型能實(shí)現(xiàn)對霉變玉米內(nèi) AFB1和1ZEN 含量的準(zhǔn)確預(yù)測,該模型對AFB1和ZEN含量的預(yù)測精度(RPme,RMSEP)分別為(0.9981,0.5930)和(0.9989,0.8058)。


相關(guān)產(chǎn)品

農(nóng)業(yè)監(jiān)測排行榜top10

農(nóng)業(yè)監(jiān)測相關(guān)推薦